82 research outputs found

    DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

    Get PDF
    Applying data-driven approaches to non-rigid 3D reconstruction has been difficult, which we believe can be attributed to the lack of a large-scale training corpus. One recent approach proposes self-supervision based on non-rigid reconstruction. Unfortunately, this method fails for important cases such as highly non-rigid deformations. We first address this problem of lack of data by introducing a novel semi-supervised strategy to obtain dense inter-frame correspondences from a sparse set of annotations. This way, we obtain a large dataset of 400 scenes, over 390,000 RGB-D frames, and 2,537 densely aligned frame pairs; in addition, we provide a test set along with several metrics for evaluation. Based on this corpus, we introduce a data-driven non-rigid feature matching approach, which we integrate into an optimization-based reconstruction pipeline. Here, we propose a new neural network that operates on RGB-D frames, while maintaining robustness under large non-rigid deformations and producing accurate predictions. Our approach significantly outperforms both existing non-rigid reconstruction methods that do not use learned data terms, as well as learning-based approaches that only use self-supervision

    FaceVR: Real-Time Facial Reenactment and Eye Gaze Control in Virtual Reality

    No full text
    We introduce FaceVR, a novel method for gaze-aware facial reenactment in the Virtual Reality (VR) context. The key component of FaceVR is a robust algorithm to perform real-time facial motion capture of an actor who is wearing a head-mounted display (HMD), as well as a new data-driven approach for eye tracking from monocular videos. In addition to these face reconstruction components, FaceVR incorporates photo-realistic re-rendering in real time, thus allowing artificial modifications of face and eye appearances. For instance, we can alter facial expressions, change gaze directions, or remove the VR goggles in realistic re-renderings. In a live setup with a source and a target actor, we apply these newly-introduced algorithmic components. We assume that the source actor is wearing a VR device, and we capture his facial expressions and eye movement in real-time. For the target video, we mimic a similar tracking process; however, we use the source input to drive the animations of the target video, thus enabling gaze-aware facial reenactment. To render the modified target video on a stereo display, we augment our capture and reconstruction process with stereo data. In the end, FaceVR produces compelling results for a variety of applications, such as gaze-aware facial reenactment, reenactment in virtual reality, removal of VR goggles, and re-targeting of somebody's gaze direction in a video conferencing call

    {Face2Face}: {R}eal-time Face Capture and Reenactment of {RGB} Videos

    Get PDF
    We present Face2Face, a novel approach for real-time facial reenactment of a monocular target video sequence (e.g., Youtube video). The source sequence is also a monocular video stream, captured live with a commodity webcam. Our goal is to animate the facial expressions of the target video by a source actor and re-render the manipulated output video in a photo-realistic fashion. To this end, we first address the under-constrained problem of facial identity recovery from monocular video by non-rigid model-based bundling. At run time, we track facial expressions of both source and target video using a dense photometric consistency measure. Reenactment is then achieved by fast and efficient deformation transfer between source and target. The mouth interior that best matches the re-targeted expression is retrieved from the target sequence and warped to produce an accurate fit. Finally, we convincingly re-render the synthesized target face on top of the corresponding video stream such that it seamlessly blends with the real-world illumination. We demonstrate our method in a live setup, where Youtube videos are reenacted in real time

    Neural Voice Puppetry: Audio-driven Facial Reenactment

    Get PDF
    We present Neural Voice Puppetry, a novel approach for audio-driven facial video synthesis. Given an audio sequence of a source person or digital assistant, we generate a photo-realistic output video of a target person that is in sync with the audio of the source input. This audio-driven facial reenactment is driven by a deep neural network that employs a latent 3D face model space. Through the underlying 3D representation, the model inherently learns temporal stability while we leverage neural rendering to generate photo-realistic output frames. Our approach generalizes across different people, allowing us to synthesize videos of a target actor with the voice of any unknown source actor or even synthetic voices that can be generated utilizing standard text-to-speech approaches. Neural Voice Puppetry has a variety of use-cases, including audio-driven video avatars, video dubbing, and text-driven video synthesis of a talking head. We demonstrate the capabilities of our method in a series of audio- and text-based puppetry examples. Our method is not only more general than existing works since we are generic to the input person, but we also show superior visual and lip sync quality compared to photo-realistic audio- and video-driven reenactment techniques

    HumanRF: High-Fidelity Neural Radiance Fields for Humans in Motion

    Get PDF
    Representing human performance at high-fidelity is an essential building block in diverse applications, such as film production, computer games or videoconferencing. To close the gap to production-level quality, we introduce HumanRF1, a 4D dynamic neural scene representation that captures full-body appearance in motion from multi-view video input, and enables playback from novel, unseen viewpoints. Our novel representation acts as a dynamic video encoding that captures fine details at high compression rates by factorizing space-time into a temporal matrix-vector decomposition. This allows us to obtain temporally coherent reconstructions of human actors for long sequences, while representing high-resolution details even in the context of challenging motion. While most research focuses on synthesizing at resolutions of 4MP or lower, we address the challenge of operating at 12MP. To this end, we introduce ActorsHQ, a novel multi-view dataset that provides 12MP footage from 160 cameras for 16 sequences with high-fidelity, per-frame mesh reconstructions2. We demonstrate challenges that emerge from using such high-resolution data and show that our newly introduced HumanRF effectively leverages this data, making a significant step towards production-level quality novel view synthesis

    Subdivision surfaces with creases and truncated multiple knot lines

    Get PDF
    We deal with subdivision schemes based on arbitrary degree B-splines. We focus on extraordinary knots which exhibit various levels of complexity in terms of both valency and multiplicity of knot lines emanating from such knots. The purpose of truncated multiple knot lines is to model creases which fair out. Our construction supports any degree and any knot line multiplicity and provides a modelling framework familiar to users used to B-splines and NURBS systems

    Egocentric Videoconferencing

    Get PDF

    Opt: A Domain Specific Language for Non-linear Least Squares Optimization in Graphics and Imaging

    No full text
    Many graphics and vision problems are naturally expressed as optimizations with either linear or non-linear least squares objective functions over visual data, such as images and meshes. The mathematical descriptions of these functions are extremely concise, but their implementation in real code is tedious, especially when optimized for real-time performance in interactive applications. We propose a new language, Opt (available under http://optlang.org), in which a user simply writes energy functions over image- or graph-structured unknowns, and a compiler automatically generates state-of-the-art GPU optimization kernels. The end result is a system in which real-world energy functions in graphics and vision applications are expressible in tens of lines of code. They compile directly into highly-optimized GPU solver implementations with performance competitive with the best published hand-tuned, application-specific GPU solvers, and 1-2 orders of magnitude beyond a general-purpose auto-generated solver

    When LLMs step into the 3D world: a survey and meta-analysis of 3D tasks via multi-modal Large Language Models

    Get PDF
    As large language models (LLMs) evolve, their integration with 3D spatial data (3D-LLMs) has seen rapid progress, offering unprecedented capabilities for understanding and interacting with physical spaces. This survey provides a comprehensive overview of the methodologies enabling LLMs to process, understand, and generate 3D data. Highlighting the unique advantages of LLMs, such as in-context learning, step-by-step reasoning, open-vocabulary capabilities, and extensive world knowledge, we underscore their potential to significantly advance spatial comprehension and interaction within embodied Artificial Intelligence (AI) systems. Our investigation spans various 3D data representations, from point clouds to Neural Radiance Fields (NeRFs). It examines their integration with LLMs for tasks such as 3D scene understanding, captioning, question-answering, and dialogue, as well as LLM-based agents for spatial reasoning, planning, and navigation. The paper also includes a brief review of other methods that integrate 3D and language. The meta-analysis presented in this paper reveals significant progress yet underscores the necessity for novel approaches to harness the full potential of 3D-LLMs. Hence, with this paper, we aim to chart a course for future research that explores and expands the capabilities of 3D-LLMs in understanding and interacting with the complex 3D world. To support this survey, we have established a project page where papers related to our topic are organized and listed: https://github.com/ActiveVisionLab/Awesome-LLM-3D
    corecore